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1. INTRODUCTION

Mechanical behaviours of materials differ from material to material, and a number of constitutive models have

been developed to accurately describe each behaviour [1].  Out of them, models based on the unified theory,

combining the plastic and viscous strains can handle a variety of behaviours such as cyclic, stress relaxation and

creep behaviours [2].  These models are themselves very complex in order to handle a variety of material

behaviours, and, because of the variety, it is difficult to determine the best material parameters.  For instance, one

may adjust the parameters to a specific experiment at the expense of other materials.  Another may want to have

the parameters which can fit to all the experiments.  In such cases, techniques which find the best fit parameters

for one type of experiment, can no longer be used.  Otherwise, one may make a single-objective objective

function by assigning a weight to each experiment and solve the problem with an optimisation method.  The

solution of this approach however depends upon what weighting factor is chosen for each experiment.  

In this paper, a parameter identification technique using a multi-objective optimisation method is

presented.  The use of the multi-objective method eliminates weighting factors from the formulation by deriving

multiple solutions rather than deriving a single solution [3].  In the next section, multi-objective formulation of

the constitutive parameter identification is presented.  The third section deals with the multi-objective

optimisation method, namely multi-objective continuous evolutionary algroithms (MCEAs), which stems

continuous evolutionary algorithms (CEAs) previously developed by the authors [4].  Numerical examples and

conclusions are described in the following sections.  

2. FORMULATION

Inelastic constitutive equations describe stress-strain relationship of material behaviours in inelastic range and are,

in a natural sense, given by

);( xεσσ = (1a)

for strain control where the strain for all t  is defined a priori and

);( xσεε = (1b)

for stress control, which defines stress with respect to time beforehand.  In the equations, σ , ε  and x

represent the stress, strain and parameters respectively.  

Such constitutive models can be typically classified into two types: models having only observable

variables, i.e., stress and strain, and those having variables describing material internal behaviours as well as

observable variables.  One simple model for the former is Ramberg-Osgood model [5], which is given by
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where a , b  and n  are parameters to be identified.  A typical example of the latter may be Chaboches model

[2], based on the unified theory:  
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where χ  and R  represent material internal variables, describing the yield stress and the drag stress respectively.
vpε  and x =[ ,,, HnK EdhD ,,, ] are viscoplastic strain and parameters to be determined respectively.  

In order for parameter identification, minimising a least square criterion has been most widely used.  In

this approach, optimisation techniques are used to find parameters by adjusting them until the measured data

match the corresponding data computed from the parameter set in the least square fashion.  Suppose that m

experiments were conducted, each corresponding to cyclic, stress relaxation and creep behaviours and having jn

experimental data, j =1,..., m .  As the measured data are stress-strain data *]*,[ ii σε , the identification

problem is traditionally formulated as:  
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for strain control such as stress relaxation and
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for stress control such as creep, subject to the parameter space constraints:  

maxmin xxx ≤≤ , (5)

where jk  is a scaling factor.  The problem of this formulation is the dependence of the solution upon the scaling

factors, which is inevitable for single-objective optimisation.  

The formulation proposed in the paper, on the other hand, is given by
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for strain control and
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for stress control.  Note that both the strain and stress control material behaviours can be together used to identify

a set of parameters because of the multi-objective formulation.  This problem is multi-objective, so that the

conventional single-objective optimisation methods cannot be applied, thereby giving rise to the necessity for a

multi-objective optimisation method.  

3. MCEA

3.1. Individual representation

The fundamental structure of MCEA is based on the algorithms proposed by the authors, which is efficient for

problems with continuous search space.  First, a population of individuals, each represented by a continuous

vector, is initially (generation t =0) generated at random, i.e.,

λ
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where λ  represent the population size of parental individuals [6].  Each vector thus represents a search point,

which corresponds to the phenomenological representation of individual.  

3.2. Reproduction

The definition of the recombination and mutation becomes the probabilistic distribution of the phenomenological

measures accordingly.  In the recombination, parental individuals breed offspring individuals by combining part

of the information from the parental individuals, thereby creating new points inheriting some information from the

old points.  The recombination operation is then defined as
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where parameter µ  may be defined by the normal distribution with mean 0 and standard deviation σ :  

),0( 2σµ N= (9)

or simply a uniform distribution:  

),(rand maxmin µµµ = .  (10)

The mutation can also be achieved simply by implementing

),(rand" maxmin xxx = .  (11)

with a small possibility.  Note that the mutation may not be not necessary for parameter µ  with normal

distribution since it can allow individuals to alter largely with small possibility, when the coefficient µ  is large.  

3.3. Evaluation and selection

As the Pareto-optimal set [7] is to be found as solutions, the ranking process of individuals is composed of an

elimination rule.  In the rule, all the points are first concerned and the Pareto-optimal set is ranked No. 1.  The

points in rank No. 1 are then eliminated, and the points in No. 2 are ranked as the second Pareto-optimal set, and

all the other ranked are generated stepwise in the same fashion [8].  The points in rank No. k , )(kG , are

defined as

{ }},...,1{,)rank(|)( nikkG ii ∈∀== xx (12)

for further convenience.  

The evaluation process starts with finding the best and worst objective function value of each point:  

{ }},...,1{|)(minbest niff ijj ∈∀= x , (13a)

and
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If we temporarily define the fitness as
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we can get the normalised conditions:  

1)(’0 ≤Φ≤ ij x , (15)

and this allows us to treat the fitness of each function with the same scale.  The fitness of points with the same

rank has to be the same, and the true fitness of each objective function is thus defined as:  



{ })(|)(’max)()( )( kGiiji
kG

jij ∈Φ=Φ≡Φ xxxx .  (16)

The fitness of each individual can be conclusively calculated as:  
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which has the range

mij ≤Φ≤ )(’0 x . (18)

The selection operator favourably selects individuals of higher fitness to produce more often than those of lower

fitness.  As 0)( ≥Φ ix  is satisfied by this equation, the proportional selection [8], which is reported to be faster

in convergence than the other popular selection of the ranking selection, can be directly used in the proposed

algorithm.  In this selection, the reproduction probabilities of individuals are given by their relative fitness:  
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These reproductive operations form one generation of the evolutionary process, which corresponds to one

iteration in the algorithm, and the iteration is repeated until a given terminal criterion is satisfied.  

4. NUMERICAL EXAMPLES

Material constants of Chaboche’s model were identified simultaneously from experimental data of cyclic and

creep tests by the proposed method.  The results of the identification show that the Pareto-optimal solutions

obtained through the identification correlate well with both the cyclic and creep tests.  The proposed technique

also allowed one to easily find the final solution in the search space.  

5. CONCLUSIONS

Multi-objective constitutive parameter identification and an optimisation method to solve this class of problems

have been presented.  Numerical examples have demonstrated the effectiveness of the proposed technique.  The

results of the examples have not been included in this abstract due to the lack of space, but will be presented in the

final version of the paper.  
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